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Required accuracy for dual-pol

Error = random error + systematic error (bias)
< +1 (dB)

s Bias of Z

= Bias of Zp,

< £0.1~0.2 (dB) < very high accuracy!!

B CIMO GUIDE

Table 7.4. Accuracy requirements

B NOAA/National Weather Service

Radar Functional Requirements (2015)

Threshold: WSR-88D capability, in the absence of clutter filtering.

o Reflectivity: 1 dBZ for target with true spectrum width of 4 m/s and SNR > 10 dB

e Velocity: 0.0 m/s for target with true spectrum width of 4 m/s and SNR > 8 dB

e Spectrum Width: 0.2 m/s for target with true spectrum width of 4 m/s and SNR >
i0dB

e Differential Reflectivity: 0.1 dB for target with true differential reflectivity (ZDR) of
less than +1 dB, true spectrum width of 2 m/s, Correlation Coefficient 2 0.99,
dwell time of 50 ms and SNR 2 20 dB (for ZDR with a magnitude greater than 1 dB,
bias should be less than 10% of the ZDR magnitude)

e Correlation Coefficient: 0.006 for target with true spectrum width of 2 m/s,
Correlation Coefficient 2 0.99, dwell time of 50 ms and SNR 2 20 dB

e Differential Phase: 1 deg for target with true spectrum width of 2 m/s, Correlation
Coefficient of 2 0.99, dwell time of 50 ms and SNR 2 20 dB

Parameter ~ Definition Acceptable accuracy”
@ Azimuth angle 0.1°
¥ Elevation angle 0.1°
v Mean Doppler velocity 1.0m s’
Z Reflectivity factor 1dBZ
6, Doppler spectrumwidth 1 m s
o Differential reflectivity 0.2dB
K, Specific differential phase < 0.5 degree km™'
Puv Cross-polar correlation 0.001
Note:

a These figures are relative to a normal Gaussian spectrum with
a standard deviation smaller than 4 m s™. Velocity accuracy
deteriorates when the spectrum width grows, while reflectivity

accuracy improves.

B NEXRAD (Ryzhkov et al. 2005)

IfR(Z) < 6 mm b, then
R=RZ)(04+5.0|Z, - 1|**);
if6 < R(Z) < 50 mm h™', then
R =R(K,)/(0.4+3.5|Z, — 1|'7);
if R(Z) > 50 mm h™', then R = R(K ), where

R(K,,) = 44.0 |K, |°*= sign(K_). 3




Causes Of Z bias

Radome Loss [dB] Radar equation
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Pr Errors in hardware parameters cause bias in Z.
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rl-lm1 ® Measurement errors of hardware parameters
= Mistakes in setting of radar parameters

Pt L& = Changes with age

Calibration of Z is called “absolute calibration.”
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Calibration of Z

= Using metal sphere [ :
= Using external receiver and transmitter
s Using disdrometer =
= Using rain-gauges _ "

e
. = exio® '
= Self-consistency ¢

E Bx107°

()]

S,

NI 4x10°®
Adachi et al. 2015: Estimation of Raindrop
Size Distribution and Rainfall Rate from o107
Polarimetric Radar Measurements at
Attenuating Frequency Based on the Self-

Consistency Principle




Using External Receiver and Transmitter
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* Using Disdrometer

Both radar and disdrometer observe Z

Disdrometer radar
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i Using rain-gauges

= Assuming Z-R relations (B, B)

= Derive bias as a ratio between il
accumulative rain-amount observed

o]
N 60,
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by radar- B T Ry e v |E.6 8 20
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Steiner et al, 1999: Effect of bias adjustment and rain gauge data quality control on radar rain fall estimation.
Water Resour. Res., 35, 2487-2503.



Using rain-gauges

1-hour rainfall (radar, mm)-«
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‘-L Causes of Zdr and ddp bias

Pt_H
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= Difference of Tx power, Rx sensitivity,

losses between H and V result in Zdr bias.

= Difference of path length between H and V

result in ®dp bias.
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i Calibration of Zdr and d&dp

= Using metal sphere

= Bird-bath scan (PPI scan at el=90" )

= Using drizzle or light rain

= Using solar signals (only for Receiver bias)

11



Bird-bath scan

= From upward view, even a large rain drop looks circle

Side view Upward view
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Range (km)

i Bird-bath scan

= Useful in estimating Zdr bias and ®dp bias
= Zdr and ®dp must be zero

Znp EL =90 deg Azimuthal-mean
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phv correction to mitigate effect of noise

Ron|
‘ROhV‘ correction ‘ Ohv

Phv =
(ROthOW )1/2 h ((ROhh o Nh)(ROW o Nv))l/2
Where,

V,[nl=1,n1+iQ,In] n=
V,[n]=1,In]+iQn] n=

Auto correlatlon for H signal |

Ronn = ZV [NV, [n] = Z( I;[n]+Q;[n])
/Auto correlation for Vsignal | n
=YV Tl = > (1 + Qi)

Cross correlatlon between H and V |

Rony = ZV[ IV, In ]——Z{(lh[n]lv[n]+Qh[n]Qv[n])+i(lh[n]Qv[n]—Qh[nllv[n])}

phv —

1...N _
1..N Subtract noise level

The method which does not depend on noise level estimation is also proposed.
Cheong et al. 2013: The impacts of multi-lag moment processor on a solid-

state polarimetric weather radar 14



i Summary

= High accuracy is needed for dual-pol data to make use of
them.

= Calibration of Z (absolute calibration)
= Calibration of Zdr and ®dp
= phv correction is needed to mitigate effect of noise

= More information will be available via DWD HP of Weather
Radar Calibration & Monitoring workshop 2017
https://www.dwd.de/EN/specialusers/research_education/
seminar/2017/wxrcalmon2017/wxrcalmon_en_node.html
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